

Question Paper

B.Sc. General Examination 2022

(Under CBCS Pattern)

Semester - VI

Subject : MATHEMATICS

Paper : SEC 4 - T

Full Marks : 40

Time : 2 Hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

[PROBABILITY AND STATISTICS]

1. Answer any *four* questions :

(a) A point *R* is chosen at random on a line segment OA of length 2*a*. Find the probability that the area of the rectangle with its sides OR and RA will never exceed $\frac{a^2}{2}$. 5

(b) (i) If X is a Poisson (μ) variate, then find the probability distribution of X^3 .

(ii) Find the mean and variance of the rectangular distribution.

(c) (i) Show that correlation coefficient between two random variables is numerically 1, if and only if they are linear.

5×4=20

3+2

- (2)
- (ii) The regression lines of two random variables X and Y are 2x+3y=5, 5x+2y=8. Find their correlation coefficient. 2+3
- (d) For a normal (m, σ) distribution, prove that $\mu_{2r} = 1.3.5....(2r-1)\sigma^{2r}$, where μ_r represents *r*-th order central moments and *r* being a positive integer. 5
- (e) If *X* is a binomial (n, p) variate, then prove that $\mu_{k+1} = p(p-1)\left(nk\mu_{k-1} + \frac{d\mu_k}{dp}\right)$, where μ_k is the *k*th order central moment. 5
- (f) Two discrete random variables *X* and *Y* have joint probability mass function given by the following table :

		Y					
		1	2	3			
	1	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{12}$			
X	2	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{12}$			
	3	$\frac{1}{12}$	$\frac{1}{12}$	0			

Compute the probability of each of the following events :

(i) $X \le 1.5$ (ii) XY even ((iii) Y is even given that X is even. 5

2. Answer any *two* questions :

- (a) (i) State and prove Baye's theorem.
 - (ii) Show that the probability that exactly one of the events A and B occurs is P(A) + P(B) 2P(AB).

(iii) If
$$f(x) = A Exp\left[-\frac{1}{2b^2}(x-a)^2\right]$$
, $-\infty < x < \infty$, find A so that $f(x)$ is a probability density function.

 $10 \times 2 = 20$

(b) If the joint pdf of the random variables X, Y is

 $P[X_1 - 2x_2 + x_3 > 0] = \frac{1}{2}$

$$f_{x,y}(x,y) = \begin{cases} kx(3x+y), \ 0 \le x \le 3, \ 0 \le y \le 2\\ 0, \ elsewhere \end{cases}$$

Find (i) P(X+Y<2) (ii) the marginal distributions of X and Y. Investigate whether X and Y are independent. 5+4+1

- (c) (i) If X is uniformly distributed over [1, 2], find K so that $P(X > K + E(X)) = \frac{1}{6}$.
 - (ii) A jar contains three white and three red balls. The balls are drawn at random from the jar and placed on a table in the order drawn. What is the probability that balls are drawn in the order white, red, red, white, red, white? 5+5
- (d) (i) A dart is thrown at random on a square target board having vertices (1, 0), (0, 1), (-1, 0) and (0, -1), the point at which the dart hits the board being (X, Y), find the marginal density functions of X and Y and show that they are dependent.
 - (ii) Let X_1, X_2, X_3 be three independent $N(\mu, 1)$ variables. Prove that

6+4

OR

[FORECASTING]

- 1. Answer any *four* questions :
 - (a) Discuss the overall purpose people have for investing. Define investment.
 - (b) Briefly discuss the five fundamental factors that influence the risk premium of an investment.
 - (c) On August 15, you purchased 100 shares of stock in a Company X at \$65 a share and a year later you sold it for \$61 a share. During the year, you received dividends of \$3 a share. Compute your HPR and HPY on your investment in X.
 - (d) Discuss the process of double exponential smoothing.
 - (e) Discuss the key factors of time series in business forecasting.
 - (f) What are the disadvantages of forecasting?
- 2. Answer any *two* questions :
 - (a) Given the weekly demand data, what are the exponential smoothing forecasts for Periods 2-10 using :

A) $\alpha = 0.10$, B) $\alpha = 0.60$

Assume F1 = D1

Week	1	2	3	4	5	6	7	8	9	10
Demand	820	775	680	655	750	802	798	689	775	?

- (b) Given forecast errors of -1, 4, 8 and -3, what is the mean absolute deviation?
- (c) In a simple linear regression model, $y_i = \beta x_i + \varepsilon_i$ where ε_i is $N(0, \sigma^2), i = 1, 2, ..., n$. Determine an unbiased estimator of σ^2 .
- (d) Suppose there are 5 explanatory variables (including an intercept term) in the model $y = X\beta + \varepsilon$ and n = 26. Further, the sum of squares due to total is obtained as 300 and sum of squares due to error is obtained as 100. Find the value of *F*-statistic in the context of analysis of variance.

5×4=20

10×2=20

OR

[PORTFOLIO OPTIMIZATION]

1. Answer any *four* questions :

5×4=20

- (a) Define (i) Beta of a portfolio (ii) Security market line.
- (b) You have a portfolio with a beta of 0.84. What will be the new portfolio beta if you keep 85% of your money in the old portfolio and 14% in a stock with a beta of 1.93?
- (c) What are some of the benefits of diversification?
- (d) Use the information in the following to answer the questions below :

State of Economy	Probability of State	Return on A in State	Return on B in State
Boom	35%	0.040	0.210
Normal	50%	0.030	0.080
Recession	15%	0.046	-0.010

- (i) What is the expected return of each asset?
- (ii) What is the variance of each asset?
- (e) Define the Sharpe, Trey nor, and Jensen measures of portfolio performance evaluation.
- (f) Explain different types of risks in a portfolio optimization.

2. Answer any *two* questions :

- (a) Explain Sharpe model for determining the efficient portfolio set.
- (b) Explain the capital asset pricing model (CAPM).
- (c) Explain Markowitz approach to portfolio selection.
- (d) Write a note on financial markets.

 $10 \times 2 = 20$